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On the basis of the recent demonstration that sources of the dual Riemann 
tensor are violations of local energy-momentum conservation, it is hypothe- 
sized that matter is subject to the Heisenberg uncertainty principle because 
of stochastic Planck-scale fluctuations in the Euclidean geometry of the 
vacuum. The identification of such singularities with unitons, whose masses 
are quantized in discrete units of the Planck mass, and also with the 
sources of "strong gravity," is shown to lead to the correct strength, range, 
and duration of strong interactions. A vacuum-induced cosmological term, 
due to coupling of spin to space-time torsion, results in massive gravitons, 
with mass similar to the spin-2 mesons, and a Yukawa, rather than New- 
tonian, variation of the hadron gravitational potential, thus adding support 
to "strong gravity" theories of the strong force. 

1. I N T R O D U C T I O N  

In  recent years, the search for unification o f  nature 's  known forces in a 
theory involving a single basic interaction and a unique coupling constant  o f  
a spontaneously broken fundamental  gauge symmetry group has stimulated 
interest in the pr imary role gravitation may play in determining the absolute 
strengths o f  the other forces, in particular, the strong interaction, to which 
at tention will be confined here. In "s t rong gravity" ( f -  g)  theories (Isham 
et al., 1971a) the essential idea is that, in analogy to the vector meson domi-  
nance o f  the electromagnetic coupling of  hadrons (mixing of  the pho ton  with 
the p, oJ, and ~ mesons), the gravitational interaction o f  hadrons  proceeds 
only indirectly th rough  the exchange o f  gravitons (unlike that  o f  the leptons), 
the graviton mixing with massive spin-2 mesons. It  is easily shown (Ross, 

1 Present address: 205, Malmesbury Park Road, Bournemouth, BH8 8PX, England. 
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1972) by solving Einstein's field equations with the energy-momentum tensor 
of a Yukawa field as source that the metric tensor has a Yukawa potential as 
well as a Newtonian potential present. The former is generated by the 
"strong" charges carried by hadrons and dominates the latter at distances of 
the order of magnitude of the hadron Compton wavelength. Leptons, which 
carry no "strong" charges, generate only the weak "Einstein" gravitational 
field and so do not interact strongly, their fields being due to their energy 
alone. Identification is then made of the exchanged spin-2 meson with the 
members of the spin-2 + § + nonet with the quantum numbers (I = Y = 0) of 
the vacuum, in particular, thefmeson (1254 MeV). However, a gravitational 
explanation of strong interactions should not depend on the existence of such 
mesons, which, after all, occur in nature only because of the strong forces. 
The essential features that distinguish them from the other forces--strength, 
range, and duration--should have an explanation that is independent of the 
energy, distance, and time scale which they set. The latter should, indeed, be 
derivable, not presupposed as in "strong gravity" theories, which are hence 
still phenomenological as traditional field theory is, to some extent. In such 
theories, too, the basic distinction between leptons and hadrons is not ex- 
plained but, instead, merely upheld and so as fundamental explanations 
somewhat beg the question. 

In the following are offered arguments, based on the notion of an 
energy-nonconserving vacuum and "dual" gravitational charge, which not 
only set, a priori, the scale of strong forces but also lend support to the 
hypothesis of a stochastic basis for quantum mechanics arising from random 
fluctuations at the Planck level in the gravitational field of the vacuum. Insofar 
as Einstein's field equations are not the equations relating expectation values 
of the corresponding field operators, the marriage of general relativity to 
quantum mechanics should not have even been agreed to, let alone consum- 
mated. The order-of-magnitude calculations presented here should be seen as 
pointing towards the underlying physics only and should not be regarded as 
rigorous in themselves. They serve only to emphasize the possibility of a 
gravitational origin of strong interactions. 

2. "DUAL" GRAVITATIONAL CHARGE AND 
ENERGY NONCONSERVATION 

In an initial step towards a properly quantized theory of gravitation, 
Motz (1972) has argued that the concept of gravitational charge G1/2m is more 
relevant for quantum matter than the classical notion of inertial mass, m. 
Using the method due to Schwinger (1966, 1968) he has shown that the 
demand for quantization in integer multiples of h (Planck's reduced constant) 
of the orbital angular momentum of two point particles of mass M, bound by 
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gravity, is equivalent to the following quantization condition on their masses 
(or rather their gravitational charge): 

(G1/2M)2 = nhc (n = 0, 1, 2 . . . .  ) (2.1) 

o r  

m = nl/2Mo (2.2) 

where 3//o = (he/G) 1/2 is the Planck mass (Mo = 2.2 • 10-Sg = 1.22 x 
10 t9 GeV). Such superheavy particles or "unitons" may exist in nature. Their 
identification even with quarks has been suggested (Sivaram and Sinha, 1974). 
We propose that they exist as spin-1 bosons in uniton-antiuniton pairs 
(U-U_/) into which the graviton can dissociate, just as photons can behave as 
virtual electron-positron pairs. Whether they exist as free particles, albeit 
with a very short lifetime, is irrelevant to their role, proposed here, as Gold- 
stone bosons arising from the spontaneous breakdown of Poincar6 symmetry 
due to nonconservation of the vacuum energy. That massive particles are 
involved somehow in the spontaneous breakdown of unified gauge group 
symmetry and may lead to the observed disparity in strength of the strong, 
weak, and electromagnetic interactions has been demonstrated recently 
(Georgi et al., 1974). Gravitation offers the possibility of  a natural mechanism 
whereby superstrong symmetry breaking of  a fundamental gauge group 
symmetry leads to the rescaling of particle masses from the Planck magnitude 
down to the level observed in nature. 

Relevant to this idea is the demonstration by Isham et al. (1971b) that the 
Planck mass and the Planck length Lo = (hG/ca) 112 are the effective cutoff 
parameters in the gravitational suppression of ultraviolet infinities in quantum 
electrodynamics. Notice that the Planck length is just half the Schwarzschild 
radius of the uniton, indicating the possible role of the uniton as a black hole 
of the quantized gravitational field in providing the first link in the chain of 
symmetry-breaking mechanisms for which gravity is responsible. 

We shall see in Section 3 that it is possible to understand quantum 
mechanics itself as a statistical description of  matter coupled to a metric 
tensor of a vacuum that undergoes stochastic fluctuations due to the vacuum 
polarization of the graviton into uniton-antiuniton pairs. That  unitons 
should indeed be regarded as black holes can be seen from the following 
argument: The radius of the event horizon of the Kerr-Neumann metric 
generated by a rotating, electrically charged point mass is 

r~ = m + (m 2 - a 2 - Q2)1/2 (2.3) 

where rn = G M / c  2, a = J /Mo and QZ = Ge2/c ~. 
Assuming the spin J is quantized 

J = n h  (n = 0 , - L  1 . . . .  ) 
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so since r~ is real, 
m 2 _ _  a 2 _ Q 2 / >  0 

and 

M_"~ nll2Mo 1 + ~ + 0 n~ a~ (n # O) 

a = e2/hc is the fine-structure constant. Rotating charged black holes thus lie 
on a Regge-type trajectory which is asymptotically linear and of slope 
d J / d M  2 = G/c 5 = 4.3 x 10 -6a sec GeV -1 = 1.0(h/Mo2). A rotating Kerr 
(Q = 0) black hole with a unique event horizon has mass given by (2.3): 

M = nl/2Mo 

the same as (2.2), and Schwarzschild radius rs = 2 G M / c  2 = 2nl/2Lo and 
Compton wavelength A = Lo/n ~/2 (these would be equal for a spin-�89 particle). 
So for intervals of time of the order of  magnitude of  the Planck time 
To = Lo/c  = (hG/cS) 1/2 = 5.4 • 10 sec, the graviton can behave as a massive 
U-U pair of mass '-~M0. This is consistent with Heisenberg's uncertainty 
principle because 

M o c Z T o  = 1i (2.6) 

The energy of matter coupled to the huge gravitational fields briefly 
generated by unitons will fluctuate violently leading to a purely quantum 
local nonconservation of energy of matter. Now Riegert (1976) has shown 
that the source of the "dual"  Riemann tensor is quantized and pointlike and 
responsible for a quantized violation of local energy conservation. The reac- 
tion 3-force acting on matter at such isolated points is 

Fr = a(e ' /G)n  (n = 0, 1, 2 , . . . )  (2.7) 

Note that it is independent of h and particle mass and can be repulsive or 
attractive, an effective source or sink of  energy. Now, to first order in r -  1, the 
gravitational force between two unitons separated by a distance r is 

F G M 2  GM~ 
r 2 r 2 

or  

~- M - >/ 0 (2.4) 

The inequality holds provided (e2/G) = < - ( n h e / G )  2, which is false. So only 
the equality is valid and 

= 2 - 0  1 + - -  1 +  ag~ 
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So if F .-~ FT then r ~ L0. Accordingly, the sources of the "dual"  Riemann 
tensor can be identified with pointlike gravitational charge, i.e., unitons, and 
gravitational vacuum polarization is the process leading to local energy 
nonconservation. We see from (2.7) above and (5.1 la) of Riegert's paper that 
n = 0 corresponds to local energy conservation and zero divergence of the 
particle energy-momentum tensor, i.e., to Einstein's general theory of 
relativity. It also means uncharged unitons are massless whilst charged 
unitons have mass given by (using 2.4) 

M = e/G 112 = 1.0 x 1018 GeV (2.8) 

Thus n = 0 corresponds to the classical long-range gravitational field whilst 
n :/: 0 can be interpreted as corresponding to a massive graviton, which, 
interacting with matter, results in the exchange of energy between matter and 
the vacuum and (as we shall see) the breakdown of classical mechanics and 
Einstein's relativity, in which the vacuum plays no dynamical part. The 
position of geometrical points in the space-time continuum consequently 
become imprecise to an extent that is easily estimated: The uncertainty 

A P  = F A t  

in momentum is, by (2.7), 

A P  ~ ~(c4/G)At (2.9) 

The uncertainty in position is kx  = c a t  and so the uncertainty principle 

A P A x  >~ h 

gives Ax ~> ~1/2L0 = 4.4 x 10 -44 sec. This is also the order of magnitude of 
the separation of the uniton-antiuniton pair. For consider the massive 
graviton as an U-U pair bound in quantized Bohr orbitals. The radii are 
given by 

r~ = �89 (2.10) 

and the gravitational binding energy is 

2r----~- = M~ (2.11) 

The rest mass energy of the bound state is 

M ' c  2 = 2(P,~2c 2 + M2c4) 112 + B = (3n)l12Moc2 (2.12) 

so that the massive graviton has Compton wavelength A c = h / M ' c  = 

Lo/(3n) ~12, comparing with the uniton Compton wavelength of  Lo/n 112. A 

space-time description in terms of dispersion-free variables breaks down at 
the Planck level. If we take the geometrodynamical view that the ultimate 
elements of matter (quarks or partons) are space-time "bubbles" of  radius of 
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curvature "~L0, propagating like phonons in a nonrigid crystal lattice, then 
energy nonconservation of quantum particles corresponds to inelastic 
Umklapp-type interactions with the vacuum in which discrete, quantized 
amounts of energy and momentum are transferred between the particle and 
the vacuum (lattice) as a whole, with Lo 1 being analogous to the reciprocal 
lattice vector in terms of  which phonon momenta are measured. Motz's 
formula can now be seen in a new light. Instead of expressing the quantization 
of the inertial mass of ordinary matter, the source of the Riemann curvature 
tensor, in units of the Planck mass, it provides the units of  "dual"  matter, 
the source of the dual Riemann tensor, which may or may not exist in the 
free state but which is created in the violent fluctuations of  gravitational 
fields that take place on the Planck space-time scale. 

3. VACUUM GRAVITY FLUCTUATIONS 
AND QUANTUM MECHANICS 

"Dual"  matter, that is, matter carrying gauge charges dual to the familiar 
charges of ordinary matter, does not seem to exist in nature, at least as free 
particles. The magnetic monopole, source of  the electromagnetic field dual to 
that of the electric monopole and generator of the one-dimensional Abelian 
gauge group U(I), does not seem to occur, except perhaps in dyons bound 
superstrongly to other monopoles in hadrons (Schwinger, 1969). The non- 
Abelian electric monopole, dual to the Van't Hoft-type magnetic monopole 
of non-Abelian gauge symmetry groups, also cannot exist, it may be shownY 
So "dual"  matter, in general, may be relevant only in the physics of the 
vacuum. Now according to the "Dirac veto" (Wentzel, 1966), the wave 
function of a Dirac electric monopole vanishes at points simultaneously 
occupied by a Dirac particle with magnetic charge. They cannot coexist at 
the same space-time point. Riegert has generalized this result for gravitation 
by showing that the Dirac field vanishes identically on the world-lines (D) of 
"dual"  matter (Riegert, 1976). These are defined as the sources of the gravita- 
tional field described by the dual of the Riemann curvature tensor. Now let us 
take this result to its logical conclusion. The Heisenberg uncertainty principle 
forbids the possibility of  sharp localization in space-time of an electron with 
known momentum and energy. In general, such an electron has a nonzero 
probability of  being located at any point in configuration space. But, by the 
Dirac veto, it cannot exist at the continuous set of points defining the world- 
line of "dual"  matter. So there is no uncertainty that it exists at these points. 

2 Unpublished. Strictly speaking, they cannot coexist with non-Abelian magnetic 
monopoles. They may, however, be created in pairs in the vacuum polarization of 
quantized non-Abelian gauge fields. 
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Now the gravitational field of the electron could become singular there. This 
would lead to nodes along D in the electron field. But in fact the set of ortho- 
normal tetrads defining the local Lorentz frame and the metric tensor itself 
both vanish along D ! The world-line D is a null curve along which the classical 
notions of  space-time continuum geometry and the principle of equivalence 
fail. The appearance of a continuous string of zeros in the gravitational field 
of a Dirac particle must be a purely quantum phenomenon. Of course, since 
probe electrons would avoid these points, such a breakdown of classical 
relativity would probably not be directly observable. We certainly cannot, 
however, avoid the problem by suggesting that the nodal curves are strings of 
unphysical coordinate singularities similar to the pseudo-Schwarzschild 
singularity. The coordinate frame used is unspecified and the treatment is 
quite general. We are forced to admit, therefore, that long D gravitational 
forces of a noninertial kind originate. These are quantized in magnitude 
according to (2.7). Since matter fields vanish at their source points, they can 
only arise from the quantum properties of the vacuum itself. As we shall see 
later, the order of  magnitude of  the forces is identical to that acting on matter 
at the Planck density po = M o / L o  a = cS /hG 2 = 5.2 x 10 ~3 g/cm a. Now the 
mass density of  U-U bound states is, by (2.12), 

p ,,~ M / A o  3 ~ n2po (3.1) 

and so is comparable to the Planck density. Thus we may see these forces as 
truly quantum gravitational forces arising from fluctuations in the energy of  
the vacuum, on the Planck energy-space-time scale, which occur not only 
cosmologically at the birth of the universe and in the core of black holes but 
now also in "empty space" itself; that is, gravitational collapse occurs 
universally and perpetually. The quantum vacuum is a reservoir of energy and 
between it and matter, energy transactions take place on the Planck scale. 
Considerations such as these lead to the possibility of  understanding quantum 
mechanics as the necessary description of  stochastic interactions of classical 
particles with a neoclassical vacuum. Instead of  seeing (2.7) as a rate of 
production of  3-momentum of a quantum field that happens not to conserve 
its energy-momentum, we may alternatively interpret it as a classical (to the 
extent h is not involved) stochastic force that introduces indeterminism to the 
classical world. The nonconservation of  energy that is allowed in vacuum 
polarization is not merely because of  the uncertainty principle. Such fluctua- 
tions in the geometry of the space-time continuum may in fact be responsible 
for the latter. In this context, it is interesting to note that Nickerson, using a 
principle originally due to Leibnitz, namely, that matter determines geometry, 
has argued that the Euclidean geometry of empty space itself is generated by 
a vacuum of high negative energy density, i.e., that flat space is not empty but 
rather a sea of fermions of finite (though huge) energies (Nickerson, 1975). 
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Accordingly, the Einstein field equations are to be modified by the presence 
o f  a cosmological  term:  

G u v +  Ag.v = -KEuv (3.2) 

and the energy-momentum stress tensor Z,v has a vacuum as well as a matter  
contr ibut ion 

Y~.v = Z W  + T.v (3.3) 

Nickerson then shows that  the prescription 

A~,v = - KZ~ ~ (3.4) 

(based on the Leibnitz principle) together with the assumption T,v << X~ ~ 
(matter is a weak per turbat ion o f  the vacuum energy and geometry) leads to 
wave-mechanical  behavior  for a particle o f  mass m provided 

A = a L ~  2 (a > 0, ,-, 1, dimensionless) (3.5) 

and m c / h  << A 1/2 or  m << Mo -0 10 -5 g., We wish now to point  out  that  the 
prescription (3.4) is not  as ad hoc as it may  appear. In  the Einste in-Car tan 
theory o f  gravitation, which must  replace Einstein's theory for matter  at high 
density (Heyl et al., 1974), the metrical energy-momentum stress tensor ~"~ of  
spinning matter  is modified by a universal gravitational contact  spin-spin 
interaction 4 

G ~ = - Ka ' ~  (3.6) 
where 

aa BA A a~v "B Av .e + K { r %  ~ + ra. to.  + ,~r . .  rtv.o J + � 8 9  a + 2r,.(rv.a + 2rga)]} 
(3.6a) 

(r~. B is the canonical  spin angular m o m e n t u m  tensor density and rr176 = 

g~ar~B., r~ w = gvBr".Ca and r a = r~v). 
Thus 

G,~a + fg~,B = - KG~ (3.7) 

where 

f = �89 (_g)1/2] + K[3rara + 2z~y(G.~a + 2r~a)]} (3.8) 

a Observe that unitons, with the Planck mass, therefore cannot be regarded as wavelike 
perturbations of the background Euclidean geometry; they are not wave-mechanical 
fields, from a geometrodynamical point of view, that is. 

4 Our expression, though equivalent, differs in form slightly from that given by Heyl et al. 
because of a difference in our definition of the affine connection whereby covariant 
indices are transposed. 
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and 

+ ~c(r~r~ + "~ .a av . .  ra.~%.B + 4r~.rtaB~j)  (3.8a) 

Now for matter at the Planck density, the volume L0 a of space has spin 
angular momentum h. Hence 

r~,. B ,~ c h / L o  s and f,,~ 2 av K r a .  r v a  ~ L o  2 (3.9) 

The gravitational self-interaction due to coupling of spin to space-time torsion 
induces a cosmological space-time-dependent term with 

f ( x )  = A ( x )  = a ( x ) / L o  2 [a(x) dimensionless, -,, I ] (3.10) 

Notice that the second term in (3.8) is bilinear in the spin density and does 
not, unlike the first, vanish when the energy-momentum tensor is averaged 
over the ensemble of randomly orientated particle spins (~ 104~ a for 
protons packed together by "strong" gravity at the Planck density). So the 
cosmological term cannot be ignored when considering matter at the highest 
density possible. Of course, for the classical vacuum and prequantized world, 
it vanishes. But in the real vacuum, space is not empty and it persists. In 
support of Nickerson's hypothesis, it is suggested that the vacuum is a plenum 
with the Planck density and elementary particles are a perturbation of its 
gravitational field. Then in the absence of matter, ga~ = V~ and G ~B = 0 
so that 

o r  

<01fl0>w=~ ~<014% ~ + ~(~-.~-~ + ~ '~ ~ " = - ra . , rv ,  a + 4 r . . r t a a ~ ) l O  > 

( a / L o Z ) ~ . a  = _ K Z ~  o 

with 

a = <0[a(x)10> --  � 8 9  A + ~.t~.~"A~v'~~ + 2 ~ ) 1 0 )  (~v~ - ~Zo~v~) 
v a c  

x ~  ~ = < 0 [ 4 ~  ~ + KS.B 10> 

and 
S V ~  C " r , r ~  + .v .~ ~.~, .. = 4%. rtaav ] ra . , rv .B  + 

(It must be emphasized that the perspective is geometrodynamic, with g~ the 
gravitational field of the dense vacuum which is weakly perturbed by matter. 
This is a reasonable view since the Planck density is 1076 times as large as 
elementary particle densities.) We have thus derived Nickerson's hypothesis 
from the Einstein-Cartan theory of gravitation. The negative finite expecta- 
tion value of the energy of a spin-1 Bose sea at the Planck density may indeed 
generate a gravitational field of universally Euclidean metric. Observe from 
(3.8) that A = (01f]0) is positive, as is necessary for bosons of negative 
energy. Indeed, the requirement of a negative energy density for the vacuum 
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fixes the sign of the gravitational coupling constant and so implies that gravity 
is an attractive force. Because the cosmological term is missing in Einstein's 
preferred equations, his theory cannot predict this common fact of  experience, 
as is well known. However, the difficulty present in Nickerson's suggestion is 
that in the attempt to derive wave mechanics as the geometrodynamics of  
vacuum energy fluctuations and also to retain Einstein's preferred equations, 
one is faced with two inequivalent choices for the vacuum energy-momentum 
stress tensor that serves as the source of the dominant Euclidean geometry of 
empty space. One choice, 

Z ~  c = - (A/K)g~v (3.11) 

leads to Einstein's preferred equation 

G.Uv = - KT.~ 

and energy-momentum conservation of matter, because of Bianchi's identity. 
But no linear second-order wave-mechanical equation results because of the 
cancellation of the essential term leading to oscillations with the wavelength 
L0. The other possibility 

2~c = _ (A/K)~uv (3.12) 

leads to wave mechanics but also to Einstein's equation with a cosmological 
term: 

G,~ + a y , ,  = -~T ,~  (3.13) 
where 

g.~ = rluv + 7.~ (3.14) 

The metric condition s Vag.~ = 0 implies Vay.v ~ 0 so that energy- 
momentum of matter alone is not conserved but rather that of  matter and 
the vacuum: 

Vvr,.~. = 0 (3.15) 

V~ZV ac = - VvT.~ (3.16) 

We must recognize that even as the classical limit of quantum geometro- 
dynamics Einstein's preferred equation is invalid, for the vacuum 3-force 

f~ -~ VvT.~: = - V~E~.~ ~c (3.17) 

due to nonconservation of  matter is nonvanishing when h - +  0. Since the 
geodesic equation of motion of  a test particle follows from the assumption of  
conservation of  energy-momentum, the world trajectory of a particle whose 
energy-momentum is not conserved is not the solution x" = ~"(s) of  

as - - - r +  - 2 J  7J-s 

Va denotes covariant differentiation with respect to the Christoffel symbol. 
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Instead, if we consider, for simplicity, a point particle of mass m whose 
energy-momentum tensor is given by 

dx ~ dx ~ 
(-g)~Z2T"* = P ds ds (3.18) 

where 
p = mS~(x - ~) (3.19) 

and integrating (3.12) over a world tube enclosing its trajectory, we obtain 

d2~"ds ----7-+ ('a-fi} d U d ~ t x  . . . . . .  ds ds ml F~U~c(~:) (3.20) 

where 

and 

so that 

f 3 /xv rr = ( -g ) l /~  d xV~Xooo (3.21) 

8p ~ 1 df~"~, ( dp"~ (3.22) 
V~X~c - 8 ~  - (_g)l ,~ dr f~"ac = --~-] 

3 c ~ 
F ~ ( f )  = ~ -~ u~n (u~u ~ = 1) (3.23) 

The infinite set of values of n implies (for a Dirac particle at least) an infinite 
family of possible world trajectories that are no longer geodesics; energy 
nonconservation (n # 0) implies indeterminism, for only n = 0 corresponds 
to classical gravitation in which energy-momentum is conserved and the 
vacuum has no dynamical properties. Equation (3.12) is preferred over (3.11). 
Suppose now that the 3-acceleration d2~/ds 2 << c/To. Then from (3.20) and 
(3.23), m >> M0, which verifies [see (3.5) et seq.] Nickerson's conclusion that 
the Planck mass represents, effectively, a lower limit on the masses of particles 
whose motion can be described by classical deterministic mechanics. Particles 
heavier than Mo are less accelerated than lighter particles by Planck fluctua- 
tions of the vacuum so their motion is less random and more "classical." 
Also, according to the Dirac veto 

tF(D) = O, guy(D) = 0 (3.24) 

along the world-line of dual matter. Thus 

T,,(D) = 0 (3.25) 

This implies, from (3.13), ~,,~ = 0 and from (3.14), ~7,v = 0 along D. The latter 
result means our choice is consistent with the results [equations (7.7) and 
(7.8)] found by Riegert. The chosen equation, 

Gu~ + A),,~ = --KT,~ 
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reduces to the trivial identity 0 = 0 along D. Einstein's preferred equation 
merely to the vacuum field equations 

Ruv(D ) = 0 

which does not necessarily imply the correct solution guy = 0. The presence 
of  a cosmological term together with the result of Riegert that the curvature 
tensor vanishes along D forces the metric tensor to vanish as well. From 
(3.12) and (3.24) we conclude 

v g r  Euv(D) = 2,~ (D) = 0 (3.26) 

(3.24) and (3.26) can be understood as follows: Particles, geometrodynamic- 
ally, are permanent (insofar as they are stable), highly localized weak defor- 
mations of the vacuum Euclidean geometry. We may say that rest mass is the 
potential energy stored in such deformations. Because this stress in the other- 
wise flat space-time continuum is communicated to the universe at large, the 
cosmic boundary conditions (mass, radius, age, etc.) determine their ampli- 
tude (mass) in the spirit of  Mach's principle. Since, by definition, particles 
"see" the vacuum as Euclidean, they do not gravitationally interact with it. 
Instead, they constitute inertial frames with respect to the vacuum state. On 
the other hand, the world-lines D are null geodesics referred to a coordinate 
frame that is inertial with respect to the vacuum state and so the gravitational 
field of the vacuum, namely, the Minkowski metric, must vanish in coordinate 
frames free-falling with respect to it, i.e., the quantized singularities of the 
gravitationally perturbed vacuum move on the geodesics of the matter 
comprising the vacuum. The Dirac field must disappear at all points along 
them, for matter cannot gravitationally interact with the vacuum, the 3-force 
arising from energy nonconservation being noninertial in origin. Only matter 
gravitationally interacting with the vacuum could exist at these points. We 
can only conclude that the energy-nonconserving sources of the dual Riemann 
tensor are just "vacuum" matter itself and that the force is due to the crea- 
tion of gravitational charges, i.e., unitons, in support of  the conclusions of 
Section 2. 

From (3.3) and (3.12) it can be seen that when matter is itself near the 
Planck density, then 

Z,~ _ 0 
SO 

G.~ + Ag.~= 0 

that is, a truly empty quasi-de Sitter space of (approximately) constant 
curvature R = 4a/Lo 2 and radius of  curvature ~L0 is the final geometry of  
matter in the last stage of gravitational collapse when equilibrium has been 
reached with the balancing of attractive forces, due to the coupling of mass to 
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curvature, and repulsive spin-spin contact forces due to the coupling between 
spin and torsion of space-time. We may speculate that the initial state of the 
universe (and its final destiny, if it is closed) is a void, in which the distinction 
between the vacuum and matter (Planck fluctuations are of the order of unity) 
becomes meaningless. 6 

Further support to the interpretation above that the vacuum is a dense 
uniton sea comes from the following considerations: According to the 
Einstein-Cartan theory of  gravitation, the divergence of the canonical 
energy-momentum stress tensor (see Appendix A) is 

V, + Y,."~ = "B.-~~ (3.27a) 

or 
V,E."~ = ~'B.~AOB"Z~ + 2K(~-,Z."~ -- r,~E.AA, _ �89 (3.27b) 

where Z = Z."~. Suppose the matter is made up of spin-1 bosons, mass m, 
occupying an average volume ,,~La; then 

"cx ~ c h / L  a and Z.~ ~ rnc2/L a ~ E 

Arbitrarily choosing the last term in (3.27) as giving typical order of mag- 
nitude, the 3-force density is 

Gh m 
f~ = V.Z."~ ~ ~-~E ~ --c 'L--; (3.28) 

Assuming the force density is uniform over L, the interboson force is 

Gh m 
F,~ - L3f,: ,,~ T "L --5 

Identifying the particles with unitons, then m ,,0 (he~G) ~/2 and F,: ~ c~/G if 
L ~ Lo. The repulsive force between unitons due to their spins is of the same 
order of magnitude as their mutual Newtonian attractive force when they are 
at the Planck distance apart and gravitational equilibrium at the Planck 
density is possible in principle. In Appendix B, it is shown that the rate of 
change of the (contracted) energy-momentum tensor density is 

0uE = 2[~-..~aRa~. " + ~(rzX 5 - �89 (3.29) 
so 

~t 

The energy content of a Planck volume changes at a rate 

d E  ~ c 5 
-37 ~ (Lo3X) ~ cFk ~ -~ 

6 One is reminded of the Sunya (Void) doctrine of Mahayana Buddhism. 

(3 .30)  
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which is the same as the maximum rate at which the vacuum force F~ does 
work. In addition, from the Einstein-Cartan field equations for spinning 
matter" 

G~v = - KZuv (3.31) 

where Guy is the generalized asymmetric Einstein tensor, we have 

R = xE (3.32) 

Assuming the uniton mass M is effectively distributed over its Compton 
wavelength Ao = Lo/n 1/2, then E ~ mc2/hc 3 where Gm 2 = nhc and so 

o 

R ~ n2/Lo 2 (3.33) 

Hence U - U  creation causes quantized ripples in the local Euclidean geometry 
with characteristic radius of curvature Lo/n. U - U  creation is consistent with 
Heisenberg's uncertainty principle for 

hc 
A(R- 1/2) ~ L0, At ~ cl A(R- 1/2) ~ L__~O,c A E  ,,~ Moc 2 - Lo 

SO 

A E A t  ~ h 

and 

c ~ Lo _ caZo 
A P  ~ FAt  

G c G '  

SO 

Ax ,,~ Lo 

therefore 

A E A t  ~ n ~  To 2 ~  nh >~ h (3.34) 

As we stated earlier, n = 0 corresponds to conserved energy-momentum for 
matter and no uncertainty in either E or t, i.e., classical physics, n # 0 implies 
nonconservation, a nonclassical dynamic vacuum and the uncertainty 
principle. A statistical description is rendered necessary when particles have 

A P A x  ~ caL~ ~ h 
G 

A stronger statement would be that the uncertainty principle i tsel f  is a con- 

sequence o f  stochastic f luctuations on the Planck scale o f  the curvature o f  empty  
space. According to (3.30), the minimum exchange of energy between matter 
and the vacuum in the shortest time At ~ To is 

dE c 5 
A E  = --dT A t ~  n - ~  To 
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masses much less than 10- 5 g or 1019 GeV because their motion is randomized 
to a significant degree by  Planck fluctuations in the geometry. Einstein's 
equation 

is valid when the mass of gravitating matter is large compared with the Planck 
mass, its fluctuating coupling to the vacuum being negligible compared with 
its energy. The background "noise" of the random energy density fluctua- 
tions, of  order of  magnitude Moc 2 would represent a minute perturbation of 
the total energy of macroscopic particles so that classical mechanics would be 
an excellent approximation. However, for lighter particles, the vacuum 
coupling would be increasingly important, until on the atomic and nuclear 
scale, stochasticity of the fine-grained geometry of space generates ensembles 
of particle trajectories and hence particle fields. We could say that the Planck 
mass divides bodies into effectively classical and quantum objects. For  
microscopic particles, Einstein's preferred equation has to be replaced by 

G,v + Ag,~ = --KE,~ 

with the A term guaranteeing that matter free space is Euclidean and implying 
the wave-mechanical nature of  such particles. This equation would be the 
expectation value of the appropriate field operator equation. Of course, 
until Planck constant has itself been derived in terms of the constants of 
classical physics, it cannot be said that a classical or neoclassical derivation of 
quantum mechanics is possible. The inherent reason for the existence of an 
intrinsic Planck scale cutoff in energy and distance is connected with the 
unobservability of events inside the event horizon r ~ L0 of black hole 
unitons whose mass represent the lower limit on the applicability or validity 
of unquantized Einsteinian geometry (classical space-time) to particle 
dynamics in a space-time continuum whose geometry is itself subject to the 
uncertainty principle. Physical insight into the role of  unitons in vacuum 
physics is possible from the analogy of U-U states with excitons in crystals. 
When photons of  energy less than the energy gap are absorbed by a crystal, 
electrons can be excited from the filled valence band to form stable electron- 
hole pairs. The analogy is complete if we regard the vacuum as the valence 
band and matter as the conduction band of electrons. The analogy is all the 
more striking when we consider that many authors have suggested a stochastic 
(Markovian) origin of quantum mechanics. The uncertainty principle can be 
derived assuming the vacuum has an effective diffusion constant D = h/2rn 
for particles of  mass m. For  unitons this gives the relation 

Lo = (D.2To) 1/2 (3.35) 
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which is similar (Kittel, 1967) to 

d, = (D~'~) 1/2, d~ = (Dry) 1/2 

which connects the diffusion length dp (dn) and hole (electron) lifetime ~-~ (rn) 
in n-type (p-type) semiconductors. Lo and 2T0 can be thought of as the 
diffusion length and lifetime, respectively, of unitons before radiative recom- 
bination into gravitons. An investigation for the future should be to see 
whether Planck's constant could be derived from the statistical thermo- 
dynamics 9f an ensemble of colliding black holes with the Planck mass as an 
adjustable parameter setting thermodynamic equilibrium. 

It must be pointed out that energy nonconserving processes should not 
be thought of as the occasional creation of a stationary particle at isolated 
points in space. Rather space scintillates with randomly occurring points at 
which sudden fluctuations of  the vacuum energy density take place. These are 
temporary sources and sinks of quantized "dual"  gravitational charges whose 
fields exert quantized forces on matter during the time To they exist. Only the 
incoherence of such events prevents the gradual accumulation of energy in 
space. So there is no creation continuously increasing the mass of the universe. 
Since in (3.34) both positive and negative values of n are allowed, the energy of  
matter can either increase or decrease. In stochastic theories of  quantum 
mechanics, the relaxation time �9 during which initial, sharp motion of a 
classical particle of mass m disperses into a statistical ensemble of possible 
trajectories and the average energy approaches the measured expectation 
value is 

h M0 
�9 = ~b-~ = ~ - -  T0 

For electrons, Mo/rn  ~ 1022, and we have to wait ~ 10 -21 sec or the duration 
of  102~ Planck fluctuations before equilibrium is reached, that is I02a times 
as long as we would have to wait in order to measure the energy of a particle 
with the Planck mass, which can be measured only after 10 -44 sec after the 
instant it had that energy. Of course, the uncertainty principle is invalid 
before this relaxation time is up, so quantum electrodynamics can be pre- 
dicted to break down for processes involving electrons that last less than 
10 -21 sec (10 -24 sec for protons). The hadron resonances, accordingly, 
represent, the limit of applicability of  quantum mechanics. 

4. STRONG INTERACTIONS AS THE GRAVITATIONAL 
COUPLING OF " D U A L "  MATTER 

Strong forces with a range typically of 10-la cm produce shifts in energy 
~ 1 0 0 M e V  or 10-4ergs. This production of energy corresponds to an 
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average force of ~ 10 ~ dynes. The quantized force acting on matter due to 
energy nonconservation (also the force between gravitational charges sepa- 
rated by the Planck distance) is, as we have seen, ,-~ c4 /G  ~ 1049 dynes. Now 
in "strong" gravity theories, the weak (Newtonian) gravitational coupling 
constant of long-range gravity, GN, is replaced by the strong gravity constant 
of short-range gravity, G~, which is connected to the former by G~ ~ 1038GN. 
The order of magnitude of the strong-coupling strength is correctly predicted 
if the interaction is identified with the coupling of "strong" gravitational 
charges whose quantized masses are now given by 

G ~ M  ~" = n h c  (4.1a) 

that is, 

M = n~/2Mo (3//o = 1.22 GeV) (4.1b) 

Justification beyond that usually given for this replacement of constants can 
be given by hypothesizing that the "strong" gravitational field equations for 
hadrons are 

G,~ + Agu~ = - , % r Z ~  ~ - ,%T,~ (4.2) 

where ,% = 8~rGJc  ~. Then (3.17) and (3.23) become 

GN V~Zyy~c 
f~: = V~T.~ - Gs " 

and 

3 GN C 4 3 c 4 
FJ~c . . . .  n = n (4.3) 

2 c GN 

Also, the rate of nonconservation of energy is ~ c S / G ~  ~ 1023 GeV sec -1 
During the time scale of strong interactions ~ 10 -24 sec, the energy change 
would be ~ 100 MeV, which is exactly the hadronic scale set by strong forces. 
Actually, the time scale is also predicted, since the "strong" Planck length 
Lo = 0.16 F is the uniton Compton wavelength which would determine the 
range of "strong" gravity and so the energy of interaction as well. Alterna- 
tively, it can be seen as the "strong" Planck time To = L o / c  ~ 10 -24 sec. 
This interpretation correctly predicts the essential features--strength, dura- 
tion, and range--that  distinguish strong forces from the weak and electro- 
magnetic. Since leptons do not interact strongly, they do not couple to 
"strong" unitons (mass Ms) but only to "weak" unitons (mass M~ = 1019Ms). 
The coupling between "strong" and "weak" unitons is of the same order of 
magnitude when they are the same distance apart, so vacuum polarization 
into massive "weak" unitons might be expected to be important in strong 
interactions. However, such Feynmann diagrams involving ~ 102o Planck 
fluctuations, each of .-~ 1019 GeV, during the interaction, would have an 



58 Phillips 

infinitesimal contribution to the overall transition amplitude. It should be 
emphasized that, in assuming vacuum polarization to occur on two levels-- 
one the "weak" Planck level responsible for quantization and the other the 
"strong" Planck scale that is the arena for strong forces--we are not implying 
a bimetric theory of gravitation. All hadrons are sources of one gravitational 
field which is made up of two components. Leptons, without "strong" 
gravitational charge, generate and couple to the long-range Newtonian field, 
whilst hadrons, as gravitational dyons, couple to both the Newtonian and 
Yukawa potentials, the latter arising from exchange of massive U-U states, 
i.e., for a gravitational dyon 

g00 = 1 + 2___r (4.4) 
c 2 

and 

where 
r = Cu + r (4.5) 

and from (2.11) 

Cz~ = - GNU, r = G,M e-rlt~ (4.6) 
r i" 

R = Ac ~ L0  

Weak gravity would dominate (q~N > r for e~lZo > 103a, that is for r > 
90L0 ~ 14 F. Over a distance of about 10 Compton wavelengths, the charac- 
ter of strongly interacting particles would Change rapidly from leptonic to 
hadronic. It should be noticed that uniton-antiuniton pairs, coupled by a 
Yukawa gravitational potential, cannot form Bohr-type stationary bound 
states. This is seen readily by considering two unitons of the same mass M, 
revolving in circular orbits of radius r about their common center of mass with 
angular velocity o9. The force per unit mass is 

F -  de = F~ + F~ (4.7) 
dr 

where 

SO 

GNM 
F N  - -  r2 Fs = - - 7 r  + 

F, >> F~r provided r ~ R 

The centripetal acceleration of each uniton ~o2r is due to the gravitational force 

F =  MoJ2r= MIFI ~ MIF.[ G~M2 ( ~ )  = (2r) 2 1 + -  e -2T/R (4.8) 
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The quantized orbital angular momentum is 

Mr2oJ + Mr2oJ = 2Mr2oJ = nh (n = 1, 2, 3 . . . .  ) (4.9) 

Using (4. lb), the radii r~ of the orbitals are given by the roots of the trans- 
cendental equation 

X(1 + X) = 2ne x [ X  = 2(n)l/2r,/Lo] 

none of which are positive. U - U  states are unlikely to be long-lived and would 
exist only as spin-2 resonances. On the other hand, the remarks made in 
Section 3 [see (3.28)] suggest that such "unitonium" states might be stabilized 
(though no longer Bohr orbitals) by the repulsive spin-spin interaction 
which could prevent collapse and annihilation into gravitons. Suppose 
F ~ c 4 / Q ,  then instead of (4.8) we have 

(2r) 2 1 + e - 2 r m , - ~ -  Gs 

and stable states may exist since there are real positive roots of the resulting 
transcendental equation 

j~%x = n2(1 + X) 

[for n = l, rl = 0.4Lo, comparing with the value r~ = 0.8L0 of the strong 
gravity Schwarzschild radius rs obtained as solution of goo(r) = 0]. If the 
boson unitons are spinless, however, the spin-spin interaction vanishes and 
U - U  states bound by strong gravity must be unstable. Semiclassical calcula- 
tions such as those above are valid insofar as the unitons have the least mass 
for classical mechanics to be valid, as discussed earlier. The Planck mass also 
represents the least mass for a particle obeying Einstein's field equations, i.e., 
they are valid only if 

o r  

m r  2 

A0 3 >> ~ -  1Lo 2 

i.e., m >> M0 ~ 10 -5 g for leptons (10 -24 g for hadrons). 

5. M A S S I V E  G R A V I T O N S  A N D  H A D R O N  G E O M E T R Y  

We now show that the gravitational field equations proposed above (the 
vacuum modified Einstein equations) reduce, in the case of hadrons, to the 
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wave equat ion of  a massive pure  spin-2 field (in the weak-field approx ima-  
tion) whose static, spherically symmetr ic  solution has the Y u k a w a  form. Let  

g.v  = w~v + ~.~ ( l~.vl  << 1) (5.1) 
so tha t  

guy = ~?.v __ seuv 

We propose  that  hadrons  obey the following gravi tat ional  field equat ion:  

Gut + A~guv = -K~Z~"  - x~T.v (5.1a) 
or  

Guy + A,f .v = - , q T . v  (5.1b) 

where A~ ~ L f f  2 and L0 = (Gsh/c3) 112 is the Planck length of  " s t rong"  gravity 
(L0 = 0.16 F). The scalar curvature  R is, to first order  in ~.~, 

R =  As~:+ K.T (~ = ~:v v, T =  Tv v) (5.2) 

The Ricci tensor  is 

Ruv = --K~(Tuv -- � 89  - As(~:uv - �89 (5.3) 
N o w  

2Ruv = D2~.~ - ~ . r v -  Ovr. (5.4) 
where 

In  the presence o f  matter ,  the wave equat ion  for  the per turbed metric  is 

(l-q = +. 2A.)fuv = --2K,Tuv + (Vqz~: - Oae.{:a')%v + O.rv + e r r .  (5.5) 

and in vacuo 

(l-q2 + 2As)~:uv = aur~ + avr u + a s f%v  (5.6) 

The last te rm is the deviation f rom the Einstein linearized vacuum field 
equations.  Consider an infinitesimal change of  coordinates  

x ~  x ~' = x ~ + ,~ (x )  (5 .7 )  

F r o m  the tensor proper ty  of  g.v 

cqX a OX ~r 
g'~v(x') = ax '"  Ox 'v ga , ( x )  

we have 
~'.~ = ~.~ - O.E~ - ~E.  (5.8a) 

and 
s e' = ~: -- 2aae a (5.8b) 

so that  

D'=f iv  = VlZf;v = D2(~.v - euev - ave.) (5.9) 
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(5.5) can be written 

( D  ~ + 2&)~ .~  = - 2 ~ ( r . ~  - ~ rg .~)  - �89 ~ + a ~ )  + e . ~  + e ~ .  
(5.10) 

where 
~.~ = ~:.~ - �88 (~ -= ~J  = 0) (5.11) 

The vacuum field equations are 

(D  2 + 2A~)~.~ = 0..~ + 0~.. - ~.~Oxr x (5.12a) 

and 
(I-12 - 2A~)~ = 20at ~ (5.12b) 

Using (5.11), (5.12b) becomes 

(D2 4A~)~: = 4z z ~.z (5.13) 

~.v has five independent  components  if we impose the divergence condit ion 

~ " ~  = 0 (5.14a) 
that  is, 

~ : " ~  = �88 (5.14b) 
o r  

, .  = - � 8 8  ~ ( 5 . 1 4 c )  

The Lorentz  gauge condit ion r ,  = 0, which implies massless gravitons, is no 
longer possible because A r 0. The new gauge condit ion (5.14b) is covariant  
under  infinitesimal coordinate changes provided 

D2," + ~ e " ~ ,  ~ = 0 (5.15) 

(5.8b) and (5.14c) lead to the t ransformation law 

' 1 2 T~ = ~-~ + �89 ~ = ~-v - ~[-] ~ (5.16) 

(5.6) and (5.9) give 

so that  

F rom (5.12b) and (5.14c), 

. ;  = ,~ - ([]~ - 2As),v 

(D 2 - 3As)ev = 0 

(5.17) 

(5.18) 

( N  2 - k A s ) ~  = 0 ( 5 . 1 9 )  

It  is consistent with this result to put the r ight-hand side o f  (5.12a) equal to 
zero, since then 

1 

and so 
(D  ~ - k&)~: = 0 
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which is (5.19). In summary, the weak-field approximation of (5.1 a) leads, in 
vacuo, to the field equations of a massive spin-2 field with five independent 
components: 

(I-12 + 2As)~,~ = 0 (5.20) 

where 

&v = ~.~ - �88 ~ = o ~ & ~  = o 

The spherically symmetric, static solution for a stationary point mass situated 
at the origin of the frame of reference is 

~uv = (Cur/r) e-<2A)-ll2r (r # O) (5.21) 

(Coo - Cll - C22 - C33 = 0), which is a Yukawa field of Compton wave- 
length/~c = (2A)-1/2, i.e., its range is ~Lo, corresponding to a spin-2 particle 
of  mass ~ Mo = 1.22 GeV. The gravitational field is 

~.~ = (Cu~/r)e-~Za) -1'2~ + �88 (5.22) 

where 

and ~ is the solution of  

i.e., 

g,~ = ~v + ~ 

( V  2 + = 0 

= (1/r)(A cos [(4As)l/2r ] + B sin [(z4-A~)l/Zr]} (5.23) 

The Yukawa form of the gravitational potential of a quantum particle can be 
understood as arising from the screening of its gravitational charge due to 
polarization of the vacuum into uniton-antiuniton pairs, just as the electro- 
static potential of a test charge in a metal has not the Coulomb but the 
Yukawa form as a result of  its disturbing the equilibrium concentration of 
the Fermi electron gas. It represents a screened Newtonian potential and 
the screening length is just the Planck distance. At large distances (r >> Lo), the 
dominant Newtonian potential is subject to Planck oscillations of wavelength 
A---2zr(�88 ~ ~r31/2Lo. At shorter distances (r ~ Lo), the shortrange 
Yukawa potential is effective (see Figure 1). The weak-field approximation 
remains valid even down to hadron dimensions. For  instance, ~:oo changes 
only from 10 -3 to 10 -2 for a decrease in distance from 5.7L0 = 0.9 F to 
3.5Lo = 0.5 F for a particle of mass 1 GeV. So a Yukawa variation in the 
gravitational field of a hadron must be expected to persist right up to its 
Compton wavelength. Only the order of magnitude of the spin-2 meson 
(mediating "strong" gravity) rest mass is predictable, though if A = 1/Lo 2 
exactly, then it is 21/2Mo = 1.73 GeV. 
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Fig. 1. Spatial variation in time component of hadron metric tensor due to Planck 
fluctuations. <f~ equals strong (Yukawa) gravitational potential. <fin equals weak (Newton- 
ian) gravitational potential. 

6. CONCLUSION 

The Einstein-Cartan theory leads to gravitational field equations con- 
taining a cosmological term that generates short-range massive gravitons 
possibly involved in strong interactions. Energy-nonconserving vacuum 
polarization on the Planck scale into uniton-antiuniton pairs gives the vacuum 
an intrinsic torsion and curvature, resulting in noncommutativity of transla- 
tion operators and spontaneous breakdown of local Poincar~ symmetry. The 
nonvanishing expectation value of the vacuum Bose sea spin contact inter- 
action gives a cosmological term that is large compared with the energy- 
momentum tensor of matter only if the spin tensor is coupled to space-time 
torsion by the weak (Newtonian) gravitational constant. The assumption that it 
is due to the self-interaction of unitons created by "strong" rather than "weak" 
Planck fluctuations of the vacuum implies that hadron geometry markedly 
changes and differs from lepton geometry for distances approaching the 
particle Compton wavelength, which typically is of the order of magnitude of 
the "strong" Planck length. Vacuum polarization results in a modification of 
the Schwarzschild geometry of an unscreened classical gravitational mono- 
pole. This may be the underlying geometric basis for Yukawa's virtual fields, 
if we are willing to sacrifice the notion of an inert Euclidean geometry for the 
embedding space of hadrons and admit the existence of two gravitational 
coupling constants that divides matter into leptons and hadrons and whose 
disparity may have a cosmological origin (Sivaram and Sinha, 1976). Certainly 
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the O 'Rai fea r ta igh  theorem would indicate tha t  s trong interactions do not  
have the space-t ime symmet ry  of  the Poincar6 group,  and this is exactly what  
we would expect if  they were a manifes ta t ion o f  local curved space. Implica-  
tions for  symmet ry  breaking,  in part icular  how isospin and strangeness are 
related to the existence of  gravi tat ional  dyons that  are sources of  the dual  
R iemann  tensor,  a tensor of  SL(2, C) ~ as well as o f  the ordinary  Riemann  
tensor, and the relat ion between SU3 and spontaneously  broken  SL(2, C) | 
SL(2, C) ~ will be discussed in a for thcoming  paper.  

APPENDIX A 

In  the Eins te in-Car tan  theory  o f  gravitat ion,  the generalization o f  a 
R iemann  metric space with symmetr ic  affine connect ion to a non-Riemann ,  
nonmetr ic  space with asymmetr ic  affinity, the ene rgy-momen tum conserva- 
t ion law is 

V, + Y,."~ ,,. oB~ (A. 1) TBWt~..6r t 

E.~ is the canonical  ene rgy -momen tum stress tensor, R.eg. = ga~R~ and 
�9 ~; = ~ ~.~ guard., where is the canonical  spin angular  m o m e n t u m  density 
which is related to the torsion tensor  f ~  = x " :(La~ - L~a) and its contract ion 
f~a = f2~ by 

The generalized divergence V,+Z~" is 

V,+Y,."~- (V, - 2f2u)X."~ - 2f~{~X."~ (A.3) 

F r o m  (A.2), put t ing/x = v 

2tla = Kra (A.4) 
SO 

f~Y,v = - x(r~v + �89 - �89 (A.5) 
Not ing  

,. ~,~ ,,aoB (A.6) T B V l , t . a f  t ~ '7"3. l,,.Aact 

then (A. 1) becomes 

V,Y."~ = ~ ' ~  2~(~-.E."~- ~ 4 _  �89  re. -"aaa -1- r ,c~. ,x 

where E = Z.~. 

APPENDIX B 

In  R i e m a n n - C a r t a n  space, the generalized Bianchi identity is 

v g v VtuRa,~ = 2f2tu,~Ra,,el 

(A.7) 

(B.1) 
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Cont rac t ing  over v,/3 

- V e R ~  . - ~e~Ra~,) (B.2) VuRa ~ e = 2 ( ~ R a o  ~ 

Tak ing  the inner  p roduc t  of  (B.2) with ga~ and using the metr ic  condi t ion  

Vzg av = 0 (B.3) 

and  the an t i symmet ry  p rope r ty  Ra~u = - R , a ~  o f  the curvature  tensor,  then 

V~R = 2ga"f2geRea,, (B.4) 

which, with (A.5), gives 

V~R = e ,R  = 2K(re.,aRa,,z -- raRau) (B.5) 

The E ins t e in -Ca r t an  field equat ions  are 

G~.e = Ry e - �89 = _ KZ.~B 
SO 

R = -- KZ 

and  
R~. = - ~ ( r ~ ,  - �89 y~) 

(B.5) finally becomes 

21%. Ra~u + 

(B.6) 

(B.7) 

(B.8) 

(B.9) 
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